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Abstract. It is shown that the partition function of a quantum Heisenberg model of spin-: 
can be written as the partition function of a Yukawa-Euclidean quantum field theory, thus 
making the statistical mechanical problem amenable to analysis through techniques of 
constructive field theory. 

1. Introduction 

Quantum spin systems such as the Heisenberg model have been the subject of intensive 
theoretical research fora long time [ 11. In spite of a large number of different approaches 
to these problems and the several rigorous results known [Z-41, there are still many 
interesting and difficult questions concerning not only the rigorous aspect of the 
pr&ieins ais0 their physicai inierpreiaiion (e.g. strongly correiaied modeis, antifer- 
romagnetic quantum Heisenberg). 

In this paper we prove the equivalence of a large class of quantum Heisenberg 
models of spin-; (including ferro and antiferromagnetic interactions) and the class of 
Euclidean field theory models known as Yukawa models. Essentially, a functional 
integral method is used to establish this correspondence [5]. 

We have thus rigorously connected the statistical mechanical problem with an area 
exhaustively studied in the last 25 years, namely, the constructive field theory. In this 
way, we may apply in principle the highly successful techniques developed in mathe- 
matical field theory to the original problem. 

We should mention here that in [6] and [7] the authors also relate the quantum 
Heisenberg model to an Euclidean field theory (via a Feynman-Kac formula), but 
their approach ~. is completely different and the resulting Euclidean field theoretic 
Lagrangian contains Yukawa and Luttinger type interactions. 

2. Definitions and results 

We are interested in the class of quantum spin systems described by Heisenberg models 
with Hamiltonians given by 

X= - fCsj($,+m8,) .S,  (1) 

t Supported by CNPq (Brazil). 
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where 
the sum above is taken over the sites ( i ,  j = 1, .  . . , N )  of a finite and d-dimensional 

the quantum spin operators S, are proportional to the Pauli matrices: S; =$U;, 

X is defined on the Hilbert space 

lattice A c  Zd; 

a E {x. Y ,  2); 

N 
H = @  HI 

< = I  

where H, C2; 
$,, is a decaying interaction (although this is not necessary in a finite volume) 

m y  1 IPql < K (2) 
I 

( K  is a positive constant); 
m is large enough (see appendix). 
The partition function is defined by 

Z = Tr, e-px (3) 

where p is the inverse of temperature, and Tr, is the trace over H. 
Let us remark that the mass m was introduced in (1) just to include ferro and 

antiferromagnetic interactions in our future formulae. The sole effect of this term m 
is the multiplication of Z,=, by a constant: exp[$Nm]. 

Following the ‘hint’ given by the Gaussian identity [5], we write the partition 
function in an integral form where the integrand depends on S,, not S;S,, and on 
commutable variables. Then, after standard manipulation and some analysis, we prove 
the identity between 2 and the partition function of a Yukawa model (represented by 
a pure bosonic integration [8,9]), i.e. we obtain an expression similar to 

where 4 is a bosonic field defined on N sites; d p  a specific measure; X an operator; 
and det is the infinite determinant [lo, 111. That is, we have a suitable formulation for 
the renormalization group approach to further studies in the infinite volume. Rigorously, 
we have a meaningful expression considering a proper and natural cutoff reguralizing 
the measure dp. For details see the formulae (19) and (26).  Also shown is the 
convergence of the perturbative p series for 2 with this reguralized determinant, and 
that each term (coefficient of p ” )  is finite in the limit corresponding to eliminating the 
regularizer. 

3. The correspondence 

To apply the Gaussian identity to expressions with non-commuting variables we are 
guided, in some sense, by the Lie product theorem which states 

exp[A+B] = lim (exp[A/pl exp[B/pl)’. ( 5 )  
P-- 
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Actually, we have the following result, proved in the appendix: 

Lemma 1 

where 4; E R3; the sum over repeated indices is considered; and Jg =2g + m8,. 

Using this lemma we can write 2 as 

where tr is the trace over Hi ; N is the normalization factor; f takes p values (pip, 
2p/p, .  , . , p) ;  and T is the ‘time ordering’ due to the non-commutativity of the S 
matrices: 

Now we define the function +,(?I for f in the interval [0, p3 by 

+ J r )  = + h p / p )  i f f €  ( ( n - I ) P / p ,  @/PI (9) 
(and +((O) = $@/p)), in order to write the partition function as 

where q5 is given by (4,. . . . , &); the measure is Gaussian with covariance c,(f ,  f’)Jg 

and ,yj is the characteristic function of ((i- 1)p/p, ip/p]  (for i =  1 take [O,p/p]). 
After a simple rescaling I +  I//.?: 

(now, f e [ O ,  13; ,yj is defined on intervals ((i-l)/p, i/p], and so on). 
We control the time ordering in the expression above by standard procedures: 

introducing particle creation and anihilation operators to represent the spin matrices 
ujing :he .#ick $hzoien, A caiecG; aiia:yjia uj io fuiiowiiig resuit: 

Lemma 2 

tr T exp( -/3 Io’ df  + ( f ) . S )  = 2  det:[l +BA(+)] (13) 
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where A(+) has the kernel 

[A( 4 )]A,,( 4 1 ' )  = fc ( 4  t ' )  4 ( 1 ' )  S( A, P )  (14) 
~(f,f')-~(~'-t),~(x)=1forx~O,or-lforx<O.AndA(&)iswelldefinedonthe 
Hilbert space W given by 

w = { f l f E  LiP[O, l I O ~ i P [ O ,  111 (15) 
with (if)"= ( f ' , f ' ) + ( f 2 , f 2 ) ,  where ( f J , f J ) = X k o d d  IkallfJ2; AP means anti-peri- 
odic conditions; and 

Proof: 

= 1; dt f (  t )  eirrk'. 

First of all we note that 
p 1  

g(p)  tr T exp( -p Io' dt  4 ( t ) .  S) = tr T exp( -p k = I  p - $ ( k / p ) .  S 

and det2[l+pA(q5)] (provided A is Hilbert-Schmidt) are analytic functions in p 
[lo, 111. Then, it is sufficient to prove the statement for small p. 

We take log[g(p)] (it makes sense for small p since g(O)=2) and write the spin 
matrices introducing anihilation and creation operators (as in [ 5 ] ) :  

where p and A take the values {1,2); 
P ( A ,  p )  is the spin matrix element; 
a:, a,, are fermion creation, annihilation operators; 
Tr, means the trace over the space of one fermion. 
After applying the Wick theorem and summing up the Feynman diagrams: 

where A(4)  has the kernel given by (14), and Tr is understood as the sum over indices 
A, p, and the integration on t. 

Defining a Hilbert space where A(+) is Hilbert-Schmidt, the expression for &3) 
becomes exactly the Plemelj-Smithies formula for 2 det:[I+pA(+)] [lo, 111. In fact, 
since TrA(4)=O, det2[l+pA(q5)] =det[l+pA($)]. 

To construct the Hilbert space we consider only anti-periodic functions f~ 
Lip[O, l]OLi,[O, 11 since ~ ( 1 ,  t )  = - & ( O ,  t ) .  Note that the operator fe is the inverse 
of the derivative operator 

d - f E (  1, 1 ' )  = S( t, f ' ) .  
dt  

Taking the basis for Lip[O, 11 given by {exp[Akt]lA, = aki, k c B  odd}, we see that 
1 

akr fs(exp[Akf]) =- eXp[Akt]. 

Writing A(+)=A- '+.S (where A-'=fe), we have 

Tr[At(4)A(4)I 
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where Tr, means the trace over the S matrices space. Since (18) is finite for 4 constant 
on p-intervals, it is proved that A(+) is Hilbert-Schmidt and det,[l+pA(+)] is 
well defined (notice that Tr[At(q4)A(+)] diverges logarithmically as p goes to 
infinity). U 

Now we are ready to establish the correspondence between the Heisenberg and 
Yukawa models. 

Theorem 

where the power series in p is absolutely convergent and each term (coefficient ofp") 
has a finite limit as p + Co. 

Proof: The formula above is obvious after the lemmas. The proof for the statement 
about the power series in p becomes simpler if we consider the previous expression 
for the determinant: 

2 det:[l +BA(+)] =t i  T exp -p dr  +(I). S ( Io' ) 

where the indices i (and the sum L,, . =J were not written in order to simplify the 
notation. 

Let us comment that, for a collection of S matrices, tr Sml . . . S""' equals (*2)/2"' 
or 0 if m is even, and (*2i)/2" or 0 if m is odd; and that the time ordering above 
affects just the sign of tr S*n.. . S"-, since + " , ( f , )  and +"] ( I , )  commute. So we write 
2 det:[l +BA(+,)] as 

where a = (a,, . . . a,,,), and g:( r l , .  . . I,,,) takes the values f l  (the hypercube [O, 11"' 

of (tl,. . , rm); e.g. r ,  <. . .<I,, one sector; r, <. . . < f l ,  another sector;. . .). 
is divided in secio~s where f is cunsiani ; -1 accoi&iig io the oi:e~-;ng 

Thus, 
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Permuting the sum and the integral, and using the Schwarz inequality: 

X . . . (lo' d t ? .  . . dtmN- N )I2)"'. 
Calculating the Gaussian integral, we obtain a bound for Z uniform on p: 

x { ( J / P ) m ~ + - . + m ~  [2(m,+. . .+ m N ) -  I]!!x 1}'12 (21) 
where 

3"8+.--+" is . the number of terms in 

8 Iw  
-N u,.. .a 

J is a bound for J ,  (take J = max, lJGl); 
(2(m, +. . . + m N )  - l)!! is the bound for the number of possible contractions among 

1 is the bound for the g function integrations. 
the 6 m  terms (i.e. for the number of graphics); 

Thus. 

And with the proposition 

( m , +  ...+ m )I 

m , ! .  . . mN ! 
' s exp[C,(m, + . . . + mN)] 

( C ,  depends on N) we have 

SZN([l+($9Jp e~p[C,])"~l  exp(i99Jp exp[CN])}N 

where we have used that ( m t ! ) " 2 a  (k)! and that 

To prove the proposition (23), we use the Stirling formula: 

( m , +  . . .+  m,)!  
m ,  ! .  . . mN ! 

= ( m ,  +. . . + m N )  log(m,+. . .+ m N )  

-(mllog[m,]+...+mN log["]) 
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and consider the function 

f ( x , ,  . . . , x N ) =  (x,+.  . .+x,) log(x,+. . .+x,)-(x, log[x,]+. . . + X N  log[xN]) 

where 1 S x, E W. Since x.V(af/ax,) = 0, we have af/ax, constant in the radial direction 
and thus,f(x,, ..., x N ) s ( x I +  ...+ x N ) C N  forC,=log[N]; whichprovesthepropo- 
sition and the theorem. 0 

Remarks. The bound (constant)N2 obtained for 2 (instead of (constant)N) does not 
lead to a finite free energy density as N goes to infinity. This is due to the fact that 
we did not exploit the decay of J, (we used the bound J =max,,lJql). 

The formula 

has a formal sense if we write the Gaussian integral as a sum of Feynman graphics. 
Some of the graphics will not be well defined in principle (they will contain expressions 
with E(X) at x = O ) ,  but if we follow the calculations made with the similar formula 
with covariance cp instead of 8, we see that these Feynman graphics (depending on 
p) will coincide exactly in the limit p = m with the graphics due to the formula above 
considering ~ ( 0 )  =O.  Of course, this procedure has just a formal meaning since det2 
is not rigorously defined for 4 on the support of the white-noise measure. 

We can also obtain a pure fermonic expression for 2 after writing det, in terms 
of fennionic variables and integrating out the bosonic field @ (it gives a Gross-Neveu 
model). 

Appendix 

Proofoflemmo I .  First of all, we take m larger than K ( K  from (4)). Thus 

is well defined and positive since ll$ll< m 1121. We emphasize that the statement is 
valid even for antiferromagnetic interactions. 

Now we calculate the expression 

(where A = ( p / p ) ' / ' )  writing exp[A(b,, S,)]  as a power series in A and integrating each 
term A". After the integration, reordering properly the Sp matrices, we have (for the 
term order Z n ) :  

[ ( 2 n - 1 ) ! ! ( S , , J V S , ) +  Y ( n ) ] h 2 " / ( 2 n ) !  (29) 

where Y ( n )  contains the extra terms generated by reordering the non-commuting 
matrices ( [s; ,  Sf] = i8k,&"pyST). 

To understand Y ( n ) ,  let us consider the term with four points as an example: 



5210 E A Pereira 

After the integration we have 

J(li,Ji,i,SP,S%S$98,+ J~,,,J~~,,SP,S~~SP,Sf:+J,~,J~i,i,SP,S~~S$Sp, 

where (I, P E {x, y, z } ,  ik E { I ,  . . . , N} and the sum over the indices is considered, 
The second term above, if reordered, equals 

J~~~,J&:SP,S$S:+ J~,,,,J~,$:[s~, sys8, 
generating one extra term which is considered in Y(4). 

For the order 2n,  there are (2n - l ) ! !  terms due to the integration of & .  . . &.. To 
evaluate the number of extra terms in Y(n) generated by reordering these ( 2 n  - l ) ! !  
factors, we note that the term which requires more commutations to be adjusted is 

J ~ , ~ ~ " J ~ ~ ~ ~ " . ~ J ~ , j ~ " . ~ .  . . SP,SgSc.. . sL".2S$n.,Szm. 

Adjusting this, i.e., writing it as SP,SP,nS$Y8,q., . . . , we generate n(n - 1 )  new 
factors. Consequently, the number of extra terms for the order 2n is bounded by 
(2n - l ) ! ! n ( n  - 1) .  

Considering all orders we have 

where the sum makes sense (the number of terms in Y(n) is not large enough to spoil 
the sum). Thus, using this result we write the expression (28) as 

lim [exp[(sj, J$,)P/~PI+ 9(P2/4p2)1" = exp[(Sj, JPj)P/21 (31) 

which proves lemma 1. U 

P*m 
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